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We investigate the possibility that the surface of a strongly coupled electron-phonon system behaves differ-
ently from the bulk when the relevant parameters are inhomogeneous due to the presence of the interface. We
consider parameter variations which make the surface either more metallic or more insulating than the bulk.
While it appears impossible to stabilize a truly insulating surface when the bulk is metallic, the opposite
situation can be realized. A metallic surface can indeed be decoupled from a bipolaronic insulator realized in
the bulk.
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I. INTRODUCTION

The interest in the electronic properties of surfaces and
interfaces is growing due to the increasing ability to engineer
interfaces between correlated materials and to accurately
measure surface and bulk properties. A number of discrepan-
cies have been reported between bulk and surface properties
of complex materials1,2 while interfaces between different
materials can lead to surprising properties. A notable ex-
ample is the metallic interface between the two insulators
LaTiO3 and SrTiO3.3

On the theoretical side, the investigation of the effects of
surfaces and interfaces has been focused on Hubbard-type
models, in which local repulsion correlates the electronic
motion to eventually lead, for commensurate densities, to a
Mott insulating state when the Coulomb interaction is suffi-
ciently large. These studies have either used extensions4,5 of
the dynamical mean-field theory �DMFT�,6 a theoretical ap-
proach which has provided the first unified scenario of the
Mott transition, or variational approaches.7 Studies of solid-
vacuum interfaces have unveiled the possibility of surface
ferromagnetism8 and have described the penetration depth of
a bulk metallic phase into an otherwise insulating surface.9

Indeed, Borghi et al.7 have shown the existence of a dead
layer due to an exponential penetration of metallic excita-
tions.

Another localizing effect which affects the properties of
electrons in solids is the electron-phonon �e-ph� interaction.
Also in this case quantum fluctuations inherent to the low
dimensionality of surfaces and interfaces and strong interac-
tions can stabilize novel ground states that are distinct from
the bulk. In Ref. 1 the freezing of a bulk phonon at the
surface has been invoked as the source of remarkable elec-
tronic properties.

Similarly to the case of repulsive electron-electron inter-
actions, important insights into the problem of strongly
coupled e-ph systems have been gained by DMFT.6 Studies
of the Holstein model in a homogeneous-bulk system using
DMFT �Refs. 10–12� show that as the e-ph interaction in-
creases, the conduction electrons progressively lose their
mobility, eventually evolving into a polaronic state in which
the presence of an electron is associated with a finite lattice

distortion. The same e-ph coupling can cause any two po-
larons to attract and form a bound pair in real space, called a
bipolaron. When the number of carriers equals the number of
sites, i.e., the lattice is half-filled, bipolaron formation causes
the system to undergo a continuous �at zero temperature�
metal to insulator transition at a critical e-ph coupling.

We have investigated the effect of a solid-vacuum inter-
face on this scenario in a previous paper,13 in which, in order
to focus on the purely geometrical aspect of the problem we
have considered the same parameters in the surface and in
the bulk. Even for uniform parameters, the band narrowing at
the surface14 causes a reduction in quasiparticle weight rela-
tive to the bulk, i.e., the surface is less metallic. Therefore,
upon increasing the e-ph interaction strength the polaron
crossover takes place first on the surface layer. Nonetheless,
for uniform model parameters, enhanced correlation effects
at the surface are not sufficient to turn the surface insulating
before the bulk �i.e., for a smaller e-ph coupling� and a single
metal-insulator transition occurs at the critical coupling for
the infinite system gc=gc,bulk.

13

Besides the geometrical effect of missing neighbors, the
surface properties are complicated by the fact that the micro-
scopic interactions close to the surface have a value which
may differ significantly from that in the bulk. In the Holstein
model a modification of the hopping as well as of the e-ph
coupling strength in the vicinity of the surface should be
expected for any real systems. The relaxation of the inter-
layer distance, for example, can cause an enhancement or
decrease in the hopping integrals at the surface. In this work
we shall extend the analysis of Ref. 13 to nonuniform model
parameters and investigate the possibility of the occurrence
of a metallic surface concurrent with a bulk bipolaronic in-
sulator or of a bipolaronic insulating surface concurrent with
a normal metal in the bulk. We will consider the half-filled
case, in which an actual phase transition can be observed,
even if particle-hole symmetry forbids charge transfer be-
tween surface and bulk.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian, which is a semi-infinite Holstein
model with layer-dependent parameters. In addition, we
briefly describe the embedding approach for DMFT. Results
for a range of modified surface parameters are presented and
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discussed in Sec. III. In Sec. IV we summarize with some
concluding remarks.

II. MODEL AND METHOD

We investigate the Holstein model on a three-
dimensional, bipartite simple-cubic �sc� lattice with nearest-
neighbor hopping. The lattice is cut along a plane perpen-
dicular to one of the coordinate axes, e.g., the z axis �sc�001�
surface�. The system is considered to be built up by two-
dimensional layers parallel to the surface. Accordingly, the
position vector to a particular site in the semi-infinite lattice
is written as Rsite=ri+R�. Here R� stands for the coordinate
origin in the layer � and the layer index runs from �=1 for
the topmost surface layer to infinity. ri is the position vector
with respect to a layer-dependent origin and runs over the
sites within the layer. Each lattice site is then labeled by
indices i and �. In this notation, the Hamiltonian reads

H = − �
�i�,j���

ti�,j�ci��
† cj�� + �0�

i�

bi�
† bi�

+ �
i�

g��ni� − 1��bi�
† + bi�� , �1�

where ci���ci��
† � and bi��bi�

† � are, respectively, destruction
�creation� operators for electrons with spin � and local vi-
brons of frequency �0 on site i of the � layer. The electron
density on site i� is denoted ni�, ti�,j� is the hopping matrix
element between two nearest-neighbor sites, and g� denotes
the layer-dependent electron-phonon coupling strength. We
fix the energy scale by setting t�i�,j��� t=1 for � ,��1.

To solve our model, we use an extension of DMFT to
inhomogeneous systems called the embedding approach for
DMFT.5 In this scheme, the layered structure is partitioned
into a surface region which includes the first N layers and the
adjacent semi-infinite bulk region �substrate� which is
coupled to it �see Fig. 1�. The surface corresponds to the
region where one expects different properties relative to the
bulk. It is shown next that the influence of the semi-infinite
substrate on the surface region can be described in terms of
an energy-dependent embedding potential. This can be
viewed as an additional self-energy due to the transitions
between the surface and the substrate. Because of transla-
tional symmetry in the plane parallel to the interface, the
embedding potential of the substrate is diagonal with respect

to the two-dimensional wave vector k= �kx ,ky� and can be
expressed as an N�N matrix.

By defining A�k , i�n�= ��i�n+	�1−��k�−��i�n��, the
equation for the Green’s function is given by

A�k,i�n�G�k,i�n� = 1 . �2�

While the surface region consists of only N layers, the ma-
trices corresponding to the Green’s function are infinite di-
mensional due to the semi-infinite substrate. In Eq. �2�,
��i�n� is the self-energy matrix, which in the framework of
single-site DMFT, is local �i.e., 
�i�n���=
��i�n����� and
independent of wave vectors, k. The chemical potential is
given by 	 and ��k� is the two-dimensional dispersion rela-
tion, which includes information about the surface geometry.
The ��k� matrix for a surface cutting a simple-cubic lattice
with a plane perpendicular to the z direction �sc�001� sur-
face� assumes the following form:4

��k� =	
t11�
�k� t12���k� 0 0

t21���k� t22�
�k� t23���k� 0

0 t32���k� t33�
�k� ¯

0 0 ¯ ¯

� . �3�

The intralayer �parallel� hopping and the interlayer �perpen-
dicular� hopping are specified by t���
�k� and t�����k�,
respectively,15 with

�
 = − 2�cos�kx� + cos�ky��, ����k��2 = 1. �4�

Enforcing the separation between the surface �S� layers and
the substrate �L�, we can write Eq. �2� in a block form

ALL ALS

ASL ASS
�GLL GLS

GSL GSS
� = 1 0

0 1
� , �5�

It should be noted that ALS
† =ASL and ALS is a sparse matrix

independent of k and �n. For nearest-neighbor hopping, ALS
has only one nonzero entry corresponding to the hopping
between the lowest layer of the surface and the top of the
substrate. We can solve Eq. �5� to obtain the surface Green’s
function GSS. One obtains the following relation between N
�N matrices defined on the surface block:

�ASS − ASLALL
−1ALS�GSS = 1 , �6�

The second term in the parenthesis of Eq. �6� defines the
embedding potential due to coupling of the surface region to
the substrate. By definition ALL

−1 is the Green’s function of the
substrate decoupled from the surface

G�k,i�n� = ��i�n + 	�1 − ��k� − ��i�n��−1. �7�

The embedding potential then reads

S�k,i�n� = ASLG�k,i�n�ALS. �8�

Since ALS is nonzero only between nearest-neighbor layers
of the substrate and surface regions, only the Green’s func-
tion of the first layer of the substrate,14 i.e., the first entry
G11�k , i�n� of Eq. �7�, is needed to calculate the embedding
potential. G11�k , i�n� is computable directly using a recur-
sive relation.14 The self-energy appearing in Eq. �7� is ob-

FIG. 1. Geometry of the �001� surface of a simple-cubic lattice.
The index � �horizontal axis� labels the layers parallel to surface.
�=1 refers to topmost layer. In the embedding approach for DMFT
the system is divided into a surface region of N layers and a semi-
infinite substrate. The physical properties in the substrate �e.g., elec-
tron self-energy� are not layer-dependent and coincide with those of
the bulk.
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tained through a standard DMFT calculation for the bulk
crystal corresponding to the substrate.

After constructing the embedding potential of the sub-
strate, S�k , i�n�, we can compute the self-energy of the sur-
face layers by DMFT. This can be achieved via the following
steps: �i� we associate an effective impurity model with each
layer in the surface region and solve for them by using an
impurity solver to find the layer-dependent local self-
energies, 
��i�n�. Then we construct the surface region self-
energy matrix which is diagonal in layer indices �� ,�� with
the elements, 
���i�n�=
��i�n����, �ii� we calculate the on-
site layer-dependent Green’s function via the following rela-
tion:

G��i�n� = �
k
� 1

�i�n + 	�1 − ��k� − S�k,i�n� − ��i�n����

,

�9�

where the N�N ��k� matrix is given by Eq. �3�. �iii� We
implement the DMFT self-consistency relation for each
layer, G�

0�i�n�= �G�
−1�i�n�+
��i�n��−1, which determines the

bath parameters for the new effective impurity model. These
steps have to be repeated until self-consistency is achieved.

The embedding method requires that we consider a rela-
tively small number of surface layers; it is therefore a com-
putationally less expensive extension of DMFT in the pres-
ence of an interface compared to the slab method, in which
the inhomogeneous system is simply represented as a finite
number of layers. In this study, the number of surface layers
is chosen to be N=5 and we tested �by varying this number�
that this number provides converged results. Our impurity
solver is exact diagonalization,16 where the bath is repre-
sented in terms of a finite number of levels, ns. For the case
of phonon degrees of freedom we considered here, the infi-
nite phonon space is also truncated allowing for a maximum
number of excited phonons nph. The typical values we con-
sidered for the bath level are ns=8 and typical maximum
number of phonons are nph=30–50. We tested that those
numbers provide essentially converged results. For example
changing ns from 8 to 9 changes z only by 4% for g=0.5
which is close to the transition. For smaller g the error is
smaller.

III. RESULTS

We use the technique explained in the previous section to
study the Holstein model in a semi-infinite bipartite simple-
cubic lattice with in-plane translational symmetry and layer-
dependent Hamiltonian parameters. We will work at half-
filling �one electron per site�, where any charge modulation
is excluded by the particle-hole symmetry17 and local occu-
pations on any layer, including the surface, coincide with the
average filling, �n��=1. We set the phonon frequency �0
=0.2t, which puts the system in the adiabatic regime. In or-
der to characterize the metal-insulator transition, we use the
quasiparticle weight, z�= �1−�
���� /�� ��=0�−1 �
���� is
the self-energy for layer �� whose vanishing marks the tran-
sition to the insulating state in which there is no spectral
weight at the Fermi level. Another important quantity is the

double occupancy, d�= �n�↑n�↓�, which is large in bipo-
laronic states.

We can model the inhomogeneity of the system and the
different properties of the surface layer by introducing layer-
dependent parameters. In particular, we can introduce differ-
ent intralayer hopping t11 or electron-phonon coupling g1 at
the surface or we can tune the hopping between the surface
and the second layer t12.

One immediately realizes that the actual behavior of the
parameters at the surface will depend on the specific proper-
ties of each material and on the geometry of the interface. On
the other hand the aim of this work is to understand general
tendencies of an electron-phonon system in the presence of a
surface. Namely, we want to understand what happens when
the surface is more metallic than the bulk and when the op-
posite situation is realized. Therefore we will use one single
parameter, t11 / t, to model the effect of all the others. The
case t11 t will represent all the situations in which the sur-
face is less metallic than the bulk while t11� t will represent
the opposite situation of a more metallic surface.

In Fig. 2 we show the evolution of the layer-dependent
quasiparticle weights, z� as a function of the ratio t11 / t for an
e-ph coupling slightly smaller than the bulk critical coupling
for the bipolaronic metal-insulator transition, gc,bulk�0.55.

We first focus on the regime in which the surface is less
metallic than the bulk, i.e., t11 t. We obviously find that the
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FIG. 2. Layer-dependent quasiparticle weight z� �top panel� and
layer-dependent double occupancy d� �bottom panel� as a function
of modified intralayer surface hopping t11. We show results for the
first three layers of the semi-infinite Holstein model with simple
cubic �001� surface geometry and for the bulk quasiparticle weight.
�=1 indicates the topmost surface layer. The solid lines show bulk
calculations. The insets show the imaginary part of the surface self-
energy Im 
1�i�n� on the discrete mesh of the imaginary energies

�n= �2n+1�� / �̃ ��̃=400� for t11 / t=0.1 and t11 / t=0.5.
Im 
�=1�i�n� shows an upturn at small frequencies, compatible
with a Fermi-liquid behavior.
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surface quasiparticle weight z�=1 is smaller than that of the
inner layers, although it does not vanish even for t11=0, even
though the e-ph coupling is very close to the bulk critical
coupling. The finite �even if very small� value of z�=1 can be
better identified by inspection of the self-energy which has to
diverge to have a vanishing quasiparticle weight. It is seen
from the inset of Fig. 2 that the surface self-energy 
�=1�i�n�
goes up at low frequency and we expect extrapolation to zero
as �n→0 in a Fermi liquid manner while a divergence is
excluded.

This behavior is not unexpected because a metallic bulk is
indeed able to determine an exponentially damped quasipar-
ticle weight in the neighboring layers including the surface
layer. This rules out the possibility to observe a truly insu-
lating surface on top of a metallic bulk, even if polaronic
effects will be amplified on the surface.13 The double occu-
pancy, shown in the bottom panel of Fig. 2, presents a strong
enhancement at the surface layer with respect to all the other
layers and the bulk, as expected by the reduced hopping
which favors the e-ph coupling. The second and third layers
present only small deviations with respect to the bulk.

We now consider the case of a surface which is more
metallic than the bulk, either because the surface e-ph cou-
pling is smaller or as we now analyze, t11� t. The results,
also reported in Fig. 2, show that, for very large t11 z�=1
approaches the free-electron value z�=1=1. This signals that
the surface layer is essentially decoupled from the rest of the
system and it supports an uncorrelated motion of the elec-
trons. The rest of the system, however, remains strongly in-
teracting and the �=2 layer represents the new surface layer,
the �=3 layer becomes the first subsurface layer and so on.
As is shown in Fig. 2, for all values of t11 / t, the dependence
of the quasiparticle weight in the subsurface layers on t11 is
comparatively weak and quickly diminishes with increasing
distance from the surface. The behavior of the double occu-
pancy confirms the decoupling of the topmost layer, which,
for large values of t11 / t, approaches the noninteracting value,
0.25.

For ggc,bulk, the same qualitative behavior is observed
by changing the interlayer surface hopping t12� t or by
changing the e-ph coupling at the surface g1�g. The decou-
pling between the surface and the bulk for large t11 implies
that one can in principle approach the situation where a me-
tallic surface coexists with an insulating bulk. To investigate
this possibility, we computed the quasiparticle weights as a
function of g. In Fig. 3 we plot the quasiparticle weight vs g
for a moderately enhanced surface hopping rate, t11=1.5t.
Upon increasing g two different critical interactions are
found. The first one marks the transition from a metallic to a
bipolaronic insulating state at gc=gc,bulk, in which all the
bulk quasiparticle weights �all layers except the surface� van-
ish. For larger e-ph interaction there is a range of values of g
in which the bulk is a bipolaronic insulator while the surface
is still metallic with a finite z�=1. Indeed, in this region some
weight is induced in the subsurface layers. Since the low-
energy surface excitations cannot propagate into the bulk for
g�gc,bulk and are instead reflected back to the surface for
energies below the bulk excitation gap, the induced quasipar-
ticle weight decreases exponentially with increasing distance
from the surface.

At a second critical coupling, gc,surface, the surface also
becomes insulating and bipolaronic. For g�gc,surface the en-
tire system is in the bipolaronic insulating phase. A rather
moderate enhancement of t11 is sufficient to obtain a metallic
surface phase. Obviously, a larger t11 means that electrons in
the first layer are more itinerant. A smaller surface coordina-
tion number clearly counteracts this mechanism. Conse-
quently, we expect that a larger t11 is needed to obtain a
metallic surface state for more open surfaces, such as, for
example, the �110� surface. The range of coupling g where a
metallic surface coexists with an insulating bulk quickly in-
creases as t11 is increased. For t11→� the bulk energy scales
become irrelevant and the electronic structure of the surface
layer decouples from the rest of the system.

The overall results obtained here for a model with
electron-phonon interactions are qualitatively similar to
those of Ref. 8 for a repulsive Hubbard model despite the
fact that the nature of the transition is different in the two
models. In both cases one can have an insulating surface
coexisting with an insulating bulk, which is a Mott insulator
in the Hubbard model and a bipolaronic insulator in the Hol-
stein model. Instead, in both models a more insulating sur-
face gives rise to a single metal-insulator transition. Indeed
the similarity between the two cases is not accidental. In the
antiadiabatic limit the Holstein model becomes the attractive
Hubbard model, which, at half-filling, can be mapped onto a
repulsive model by a particle-hole transformation. Then the
Mott transition of the repulsive model becomes a pairing
transition in which fermionic pairs are formed,18 which in
turn corresponds to the bipolaronic transition in the Holstein
model. Therefore the main difference between the two mod-
els is the retarded nature of the electron-phonon interaction,
as opposed to the instantaneous Hubbard interaction. In prin-
ciple in the electron-phonon case, larger lattice distortions at
the surface13 could favor an insulating surface with respect to
the case of the Hubbard model. However our results show
that the dynamical nature of the interaction is not able to
introduce qualitative differences with respect to a purely
electronic model.

To gain further insight about the region in which the sur-
face remains metallic, we consider the behavior of the pho-
non displacement probability-distribution function �PDF�,
P�x�= ��0 �x��x ��0�, where ��0� is the ground-state wave
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FIG. 3. g dependence of quasiparticle weights z� of semi-
infinite Holstein model for simple-cubic lattice in the �001� orien-
tation for enhanced intralayer surface hopping. Surface transition at
g=gc,surface. Bulk transition at g=gc,bulk.
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function and �x��x� is the projection operator on the subspace
where the phonon displacement at a given site x̂ has value x.

This quantity is a measure of the distribution of the local
distortions.19 In the absence of e-ph interaction, P�x� is a
Gaussian centered around x=0. A small e-ph coupling
slightly broadens the distribution which remains centered
around x=0, implying that the coupling is not sufficient to
give rise to a finite polarization of the lattice. Continuously
increasing the interaction one eventually obtains a bimodal
distribution with two maxima at x= �x0. A bimodal PDF
indicates that a certain number of the lattice sites are polar-
ized by the presence of electrons in such a way that the
average value of the polarization is greater than its fluctua-
tions and therefore provide evidence for electron/phonon en-
tanglement, i.e., a polaronic state. The point at which the
phonon PDF becomes bimodal is used as a marker of the
polaron crossover20 while P�x=0�=0 can be used to charac-
terize the transition to the bipolaronic insulator �even if the
vanishing of z is a more rigorous criterion�. Figure 4 shows
the phonon PDF for t11=1.5t at two e-ph coupling values,
one for ggc,bulk �left panel� and one for gc,bulkg
gc,surface �right panel�. In the first case the system is metal-
lic but polarons are already formed in all the layers except
the topmost one, which has a larger hopping amplitude, t11.
Notice that the appearance of polaronic distortion is not suf-
ficient to make the bulk insulating, confirming that the po-
laron crossover and the bipolaronic transition do not coin-
cide. Upon increasing the e-ph coupling and for gc,bulkg
gc,surface, the phonon PDF of all layers except the surface
go to zero at x=0 �bottom panel�. This confirms the insulat-
ing phase of these layers in this range of couplings while the
surface layer shows a metallic state with polaronic character,
as shown by the only slightly bimodal PDF.

IV. CONCLUDING REMARKS

We have investigated the effect of a surface on a strongly
coupled electron-phonon system. We described this system

with a Holstein model on a cubic lattice cut along one of the
coordinate axes, assuming that the surface parameters are
different from the bulk ones. We used the ratio between the
hopping within the surface layer and the hopping within bulk
layers, t11 / t, to represent the effects of other nonuniform pa-
rameters and considered both situations in which the surface
is less metallic than the bulk �t11 t� and the opposite regime
of a more metallic surface. Our focus is on the strong-
coupling regime, where we ask whether bulk and surface can
be decoupled as far as the transport properties are concerned.
In particular, for a given set of parameters, we ask whether
one part of the system can be insulating while the other is
metallic. We considered the system at half-filling, where the
electron-phonon interaction can drive a bipolaronic phase
transition. This choice inhibits charge transfer between the
surface and the bulk. Our investigation, based on the embed-
ding method for DMFT,5 shows that a metallic surface can
coexist with an insulating bulk when t11 / t�1 already for
moderate values of this ratio while the opposite behavior is
not realized even when the surface hopping is vanishing. The
bulk excitations are always able to penetrate in the surface
layer, even if they are strongly damped. Polaronic distor-
tions, measured by the phonon distribution function, can be
significantly different in the surface over a range of param-
eters.

From the experimental point of view, even if the most
typical situation is that in which the surface is more insulat-
ing than the bulk, evidence for a ferromagnetic metallic sur-
face has been reported in antiferromagnetic insulating
manganites21 and a surface insulator-to-metal transition has
been observed in insulating NiS2.22 In general these measure-
ments are difficult and rely on an interpretation of transport
and magnetic measurements on samples with varying grain
sizes.23 Similarly, a use of photoemission and tunneling spec-
troscopies should be helpful to discern surface vs bulk prop-
erties.
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